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The relation between the zeros of the partition function and spinodal critical points in Ising models with
long-range interactions is investigated. We find that the spinodal is associated with the zeros of the partition
function in four-dimensional complex temperature/magnetic field space. The zeros approach the real
temperature/magnetic field plane as the range of interaction increases.
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[. INTRODUCTION a real positive zero of the partition function in the thermo-
dynamic limit. In finite systems there is no real positive zero
Mean-field treatments of fluids and Ising models yieldfor T<T..
metastable and unstable regions, separated by a well-defined The zeros of the partition function for real temperatiire
line known as the spinodall]. As the spinodal is ap- lie ontheimaginary axis of the complex magnetic-field plane
proached, the system shows phenomena similar to that Egl. For finite systems there is a gap in the distribution of the
mean-field critical points. In particular, the isothermal sus-2€r0S arounch=0. This gap shrinks to zero fof<T. as
ceptibility y in an Ising model diverges as a power law as theN—>: The Lee-Yang relation between the zeros of the par-

spinodal value of the magnetic fiett, is approached from tition function and critical points is valid for all interaction
the metastable stafe] ranges at the Ising critical point. These ideas were extended

to complex temperature by Fisher and collaboraf@is

In order to generalize these ideas to spinodals in Ising
models, we consider an Ising model in a magnetic fireh/e
. ) . o . will consider the “infinite-range” Ising model in which each
whereh is the (dimensionlessmagnetic field. A mean-field spin interacts with all other spiri§], and the Domb-Dalton
Ising system can be realized in a well-defined way by assunt9] version of the Ising model in which each spin interacts
ing an infinite-range interaction between the syibk with its neighbors within a given interaction ranBewith a

If the interaction range is long but finite, the system is noconstant interaction. These models can be described by
longer mean field, but can be described as near mean fieldhean-field theory in the limitdl—c andR—oo (for N infi-
and the spinodal singularity is replaced by a pseudospinodaihite), respectively. Our main result is that the pseudospinodal
which still has physical effects. As with apparent critical is related to the zeros of the partition function in four-
points in finite-size systems, the susceptibility for a finitedimensional complex temperature/magnetic field space. In
interaction range can be fit to a power law over a limitedaddition, the zeros approach the real temperature/magnetic
range of the scaling fieldhi—h). For example, the suscep- field plane as the system becomes more mean field.
tibility in the metastable state of a long but finite-range in-  The structure of the paper is as follows. In Sec. Il we
teraction Ising model appears to diverge over several decad€€nsider the infinite-range Ising model and show both ana-
in (hs—h) as the pseudospinodal is approactigfl How- Iyt|cally and numerically that the zeros pf the partition func-
ever, the divergence is suppressed if the pseudospinodal fion a_pproach t_he reg andh pla_me QSN Increases. Wwe fm_d
approached too closely, indicating that the spinodal singular2 Similar resultin Sec. 1l by estimating the partition function
ity has been smeared of8]. It is also found that the prop- in the.metast_able state by using the Metropolis algorl_thm and
erties of the pseudospinodal converge rapidly with increasind'® Single histogram method. In Sec. IV we consider the

interaction range to those predicted for the spinodal in meal omt.)-DaIton'ver_sion of the Ising model a_nd estimate the
field theory[4]. partition function in the metastable state using the same nu-

x<(hg=h)™*2 oY)

Because the spinodal is a line of critical points, we expecferical techniques.

that the Ising spinodal has properties similar to those of the”. THE INFINITE-RANGE ISING MODEL: ANALYTICAL

Ising critical point. In particular, we expect that the spinodal APPROACH
is related to the zeros of the partition function. Lee and Yang
[5] showed that the singularity in the free energy Toless We first consider an Ising model in which every spin in-

thanT,, the critical temperature, arises from the presence oferacts with every other spin. We will refer to this model as
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the infinite-range Ising moddB], although the interaction the stable state free energy in the same model. However,
range becomes infinite only in the limit—co. The Hamil-  there are additional properties of the analytic continuation
tonian is that do not appear in the restricted sum which are related to
the decay of the metastable state rather than the description
N .
of the metastable state itself.
H= _JNiﬂzl Ui“i_hZ Oi- 2 We first consideMN=4 and retain only the terms in the
partition function sum that correspond to the two positive
We need to rescale the interaction so that the total interactiovi@lues ofM. From Egs.(4) and(5), we have
energy seen by a given spin remains the samél & in-
creased1]. We will take Z.(B,8h)= E g(M)e PEeANM = gBBg 4B 4260
M=2,4

4]

The subscript denotes that the sum ovbf is restricted. If

This choice ofJy yields the Ising mean-field critical tem- We letx=e~%"", the equatiorZ, =0 is equivalent to
peraturel ;=4 whenN—« [9], where we have chosen units 88 _
such thatl/k=1. erx+4=0, @)
The exact d_ensny of states is easily calculated for thlsand has the solution
model and is given by
a
Bh In2—i 5

m(N._n)!' @ +4p. €)

g(M)=

In general, we have four unknowiithe real and imagi-
nary parts ofg andh); Eq.(8) yields two conditions. In the
following we will fix

wheren is the number of up spins. We haé=2n—N and

the total energyE =Jy(N—M?)/2, whereM is the magneti-

zation.[In general, the density of states depends on loth

and M, but becauseE is a unique function ofM in the Re3=9/16, (9)

infinite-range Ising model, we need to only writM).]

Hence the partition functio can be expressed analytically which is equivalent to a temperature o=3T.. For this

for arbitrary complex inverse temperatur@sand magnetic  value ofT, the value of the spinodal magnetic field is known

fields h: to beh,~1.2704[13]. Equation(7) then gives a line of zeros

in complex (8, 8h) space. However, if we are interested only
_ — BEaBhM in the zero closest to the regl Bh plane, we need a fourth
2(B.BN) arm g(M)e e © condition. This condition is found by requiring that the quan-
tity,
To understand the nature & in the metastable state, d

imagine a simulation of an Ising model in equilibrium with a D?=(Im B8)%+ (Im Bh)?, (10

heat bath at inverse temperatygein the magnetic fielch o o ) -

=hy>0. Becausen,>0, the magnetization values will be _be a minimum, which is equivalent to requiring that the lead-

positive. Then we leh— —h,. If hq is not too large, the ing zero ofZ,, the zero closest to the regland gh plane,

system will remain in the metastable state for a reasonablee as close to this plane as possible. If weyletim 8 and

amount of time and sample positive valueshf Hence, to ~ Use Eq.(8), we can rewriteD* as

determine the zeros & associated with the pseudospinodal,

we need to restrict the sum in E®) to magnetization values

M that are representative of the metastable state. The follow-

ing examples will illustrate the need for this restriction and

the procedure for determining the zeroszof Because we wariD? to be a minimum, we require

The notion of using a restricted partition function sum to 5

describe the metastable state has a long history. Penrose and di_z o

Lebowitz [10,11] review such restricted partition functions dy y

and their properties. A more physical approach can be found

in the discussion of the noninteracting droplet model byThe solution is

Langer[12]. In this model fluctuations are restricted to non-

interacting compact droplets of the stable phase occurring in

the metastable phase. The partition function sum is restricted

to droplets less than the critical size. This approximation is

reasonable for low temperatures close to the coexistencend D=0.38097. Note that RE=Rep/(ReB%+Im %)

curve. Langer showed that this restriction gives the same=1.2417. We finally use E(8) to obtain the value of com-

metastable state free energy as the analytic continuation q@iex h. The result is summarized in the first row of Table I.

2
. (12)

D2=y?+| — g+4y

ar
- §+4y)(4)=0. (12)

—im g= 2T ~0.3696 13
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TABLE |. Results for the infinite-range Ising model if all posi-
tive values ofM are retained irz. For largerN, |Reh| overshoots
hs=1.27 and goes to zero &sis increased still further.

N Im 3 |Reh| Imh D

4 0.3696 1.8577 1.3849 0.3810
9 0.1704 1.1987 0.4782 0.1823
16 0.1070 1.1359 0.2926 0.1153
100 0.0145 0.8854 0.0366 0.0164
1000 0.0014 0.8335 0.0035 0.0016

The solutions folN=9, 16, 100, and 1000, keeping all
the positiveM contributions to the partition function, also are
shown in Table I. We see that althouBhbecomes smaller as
N is increased|Reh| overshoots the mean-field value of
~1.27 (for B=9/16). Hence, retaining all the positivd
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metastable state. In between the pealat —400 and the
peak atM =360, P(M) has a minimum aM ;=192 for
this value ofh and an inflection point altl,=298. We will
only include values of the magnetization in the partition
function sum that are greater thaf, .

The reason for this choice of the cutoff has to do with the
nature of metastability. We expect thaP(M)ox exp
(= BF(M)), whereF(M) is the metastable state free energy.
We want to exclude from the partition function valueshof
that correspond to states which are not characteristic of equi-
librium. In the infinite-range model the configurations with
M min<M <M, are unstable in that the initial evolution of a
fluctuation does not monotonically decay to the metastable
well. This behavior translates into an initial growth of fluc-
tuations rather than the monotonic decay expected in equi-
librium.

This behavior is a consequence of the fact that the free

terms in the partition function allows the system to explore€N€rgy. which is proportional to IQQ(M)), is not convex
more than the metastable state, and we need to further r&r these values oM. Obviously, this behavior holds for a

strict the sum over values &fl. Physically we want to ex-
clude values oM that would drive the system to the stable
phase.

range of values oM <M, as well. However, we can ex-
clude all configurations wittM <M ,;, because they are in
the stable free energy well and do not occur in the metastable

will keep the system in the metastable state? One way t# arbitrary to some extent as long kisis greater thaM, .

determine these values is to look R(M), the probability
that the system has magnetizatidrfor a particular value of
B andh:

P(M)=g(M)e FEefNM, (14)
Figure 1 showsP(M) for a system ofN=400 spins forh
—1.0 and B=9/16. The negative magnetization values
have a relatively high probabilittbecausén<<0) and corre-
spond to the stable phase. The positive values of magnetiz
tion have a much lower probability, and the peak Nt
=360 corresponds to the most probable valudvofn the
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FIG. 1. The probability of the magnetizatioR(M), obtained
from Eq. (14) for the infinite-range Ising model witN =400, h=
—1.0, andB=9/16. The values oP(M) are plotted on a log-linear
scale because of the dominance of the negative valudg. dle
include terms in the partition function sum ovdrfrom the inflec-
tion point of P(M) atM,=298 toM =400 in the partition function.
The inset shows the region where the inflection poirisée arrow.

To determineM,, we calculate the second derivative of
P(M) as given in Eq.(14). We find the value oM that
satisfies

FP(M) -N
oM2  (N=M)(N+M)

+BJ=0. (15)

Clearly there will be two inflection pointésee Fig. 1L We
choose the one closest to the metastable state maximum of
P(M). We find that the value oM, is independent of,
which is consistent with the idea that the free energy for this
system can be written in the Landau-Ginzburg form where
the magnetic field appears only in a term lineaMn

We now write the restricted partition functiafy (3, 8h)
as

N
Z(B.Bh)= 2 Cyx""?. (16
— WV

The coefficientsCy, extend over a wide range of values
and are as large as ¥ for the values oN that we consid-
ered. For this reason we comput€g, to arbitrary precision
S0 as not to lose accuracy. The zeroZpf which is a poly-
nomial inx, were found usinguPSOLVE [14,15|.

For a given value of In8, we solve for the zeros &, in
Eqg. (16) and find the value of that corresponds to the lead-
ing zero, the zero that minimize3 in Eq. (10). We repeat
this step for a range of values of |ghand determine numeri-
cally the value of In3 that yields the minimum value db.
The typical dependence & on Img is shown in Fig. 2.
From Fig. 2 we see that fdl=400, D is a minimum for
Im 8~0.035. Once we know this value of I8 we solve
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FIG. 2. The value oD, a measure of the distance of the leading

zero to the reaB and Bh plane, vs Img3 for the infinite-range Ising

FIG. 3. The imaginary vs the real part of the zeros of the parti-
tion function plotted in terms of the variable=e=24" for N

model forN=400. The minimum distance to the real axes occurs at=400 (empty circle and 160Q(filled circles for the infinite-range
Im B~0.035 for this value of. Ising model. The zeros were obtained by the analytical method
described in Sec. Il using I listed in Table II.

for h from the relationh=logx/(—2p). (The value ofx was

determined from the solution &,=0.) 1%
We repeat the above steps for a range of valuds ahd 7§2d¢2<1, (18
obtainD, Im B, Reh, and Imh. Our results are summarized

in Table Il. Note that Inh, Im 3, andD decrease abl in-
creases anfReh| approachef;=1.27. A plot of the zeros
of Z for the infinite-range Ising model in the Ir Rex plane
is shown in Fig. 3. The values d listed in Table Il are
plotted as a function dfl in Fig. 4. Because this log-log plot

where ¢ is the correlation lengthe is the order parameter,
andd is the spatial dimension. We haye~Ah~ %2 and ¢
~Ah¥2[2], whereAh=h,—h, and obtain

indicates a power-law dependence, we write G=¢9Ah%¥2>1, (19
For the infinite-range modeN~ &9, Hence,
DxN~2. (17)
G=NAh%?, (20)

A least-squares fit givea=0.65%-0.003. The estimate of
the error is only statistical. up to a constant of order unity. The Ginzburg paramétés

Our numerical result for the exponemtan be understood a measure of how mean field the system is for fimN{ethe
by a simple scaling argument. In order for a mean-field aplarger the value of5, the more mean field the system is. If
proach, including the idea of a spinodal, to be a reasonabl@€ keepG constant as we approach the spinodal, we see that
approximation, the system must satisfy the Ginzburg crite-

rion, that is, the Ginzburg parame®must be much greater AhoeN™25, (21)
than unity. For the infinite-range Ising model, the Ginzburg
criterion can be written a1 6] 1000 g
TABLE Il. Values of M, /N, |Reh|, Imh, Img, and the dis- [ \‘\\
tance D for increasing values oN for the infinite-range Ising 0.100 k- \\\*
model. As explained in the text, the inflection pointRfM) deter- F el
minesM,, the cutoff forM. Note that|Reh| approachesi=1.27 a T
and M, /N approachesn,=0.745 356. FoN=4 000 000, M, /N s R
=0.745 356. 0.010 | -
N M, /N Im B |Reh| Imh D C
100 0.7400 0.086 1.1601 0.2257 0.0902 0.001 Lol Ll L
400 0.7450 0.035 1.2125 0.0949 0.0367 10 100 1000 10000
800 0.7450 0.022 1.2322 0.0603 0.0230 N
1200 0.7450 0.017 1.2407 0.0453 0.0176 FIG. 4. Log-log(base 1@ plot of D, the distance of the leading
1600 0.7450 0.014 1.2456 0.0375 0.0145 zero of the partition function to the re@-Bh axes[see Eq(10)],
2400 0.7458 0.011 1.2508 0.0280 0.0112 vs the system sizé&\, using the analytical approach described in

Sec. Il. The slope is-0.659+0.003. The data are from Table II.

036119-4



ZEROS OF THE PARTITION FUNCTION AND . .. PHYSICAL REVIEW B9, 036119 (2004

We present an argument for wi@y should be held constant 105 F
in Sec. V. -
From Eq.(21) we see thatAh and the distanc® ap-

proach zero with an exponemt=2/3, in good agreement
with our numerical result. Becaugeh in Eq. (21) could be 5
associated with Irh, (hg—|Rehl|), or D, we note that Inh 10° F
in Table Il goes to zero with the same exponent as in Eq. F
(17). We also find that ffs— |Reh|) <N~ %62

Ill. THE INFINITE-RANGE ISING MODEL: MONTE
CARLO APPROACH

103 sl gl

In general, the partition function is not known analyti- 0001 0.010 hy - hy 0-100 1000
S

cally. However, we can use a Monte CafMC) method to

determine the density of states from which we can determine FIG. 5. Log-log(base 1D plot of the isothermal susceptibility

an estimate of the partition function. Such an approach haas a function of ki;—hy) for the infinite-range Ising model with
been used to find the density of states for the nearestN=10000. The system was equilibrated using the Metropolis al-
neighbor Ising mode]l17,18. In this way the leading parti- gorithm at a temperatufe= 16/9 and applied fielth=h,. Then the
tion function zeros at the critical point have been computedfield was flipped and the values of the magnetization were sampled
and the critical exponent and corrections to scaling have in the metastable state. Note thatexhibits mean-field behavior
been found with high precisiofi8]. Our goal is not to ob- over about two decades and the apparent divergence aff the
tain precise estimates of the critical exponents near the psegpinodal fieldh,=1.27 is rounded off whenht—ho) becomes too
dospinodal, but to show that the same simulations that sho®mall- This behavior is an example of the influence of a pseudos-
an apparent divergence in the susceptibility also yield aipinodal. The straight line with a slope of 1/2 is drawn as a guide to
estimate for the leading zero of the partition function whichte €Ye-

behaves as expected as the system becomes more mean field.

To this end we use the Metropolis algorithm to equilibrateNote that we do not have to determine the lower cutoffior
the system at temperatuf=16/9 and applied magnetic because the Monte Carlo simulation only samples values of
field h=h, for about 100 MC steps per spitiThe system M while the system is in a metastable stateted by the
equilibriates as quickly as 10 MC steps per spin dependingubscriptmin Eq. (22)]. As hy is increased for fixed, the
on the strength of the fieldThen we flip the magnetic field distanceD initially decreases, but then begins to increase as
and compute the histogram(E,M) from which we deter- h is approached too closely, that 3,shows a minimum as
mine the density of stategE,M) and the partition function a function ofh,. For each of value o we choose the value
for complex 8 and h. We save the values d¥l after h—  of hy for which D is a minimum. A comparison of the his-
—hg and run untilM changes sign or for 5000 MC steps per togram that was determined analytically in Sec. Il and esti-
spin, whichever comes first. We then throw away the firstmated by the Metropolis Monte Carlo algorithm shows a
20% of the data to ensure that the system is in metastabrimilar qualitative behavior, except that the latter is approxi-
equilibrium and the last 20% of the data to ensure that we dohately a Gaussian and extends to lower valuedlofsee
not retain values oM that are too close to the stable state.Table IlI), but with a smaller amplitude.

The remaining 60% of the run is used to obtki(E,M). We Table Il shows our results fdr, Im 8, andD for a range
also omit any run whose lifetime in the metastable state i®f values ofN at the values oh, that minimize the distance
less than 100 MC steps per spin. Our resultsHoE, M) are

not sensitive to the choice of the minimum lifetime nor the  TABLE Ill. Results from Monte Carlo simulations of the
percentage of each run that we use to estintdf&,M). infinite-range Ising model. The simulations were done in the ap-
[BecauseE is a function ofM for the infinite-range Ising plied field —h, and at the inverse temperature 9/16. The values of
model, we need only to computé(M). However, we need hg for each value oN were chosen so that the distariz¢o the real

to computeH (E,M) in Sec. IV] We averagedH(E,M) over B-Bh plane is a minimum. As noted in the text, this criterion ffigr
~5000 runs for each value ofi, for a total of ~1.5 also yields metastable state lifetimes that are roughly constant for
% 10’ MC steps per spin for a given value bfand N. Our the different values oN. The val_ues oM, represent the smallest
results for the susceptibility are given in Fig. 5. As men- Vvalues ofM that were sampled in the metastable state.

tioned in Sec. |,y shows an apparent divergence with a
mean-field exponent of 1/2 until the pseudospinodal is ap[\l
proached too closely. 128 09 023 4808 0.0144 1.181 0.0165 0.0163

Given the histogrant(E,M) at 8,=9/16 andh=—ho, 400 1.0 044 >5000 0.0070 1.196 0.0095 0.0076
we use the usual single histogram metl i8] and express gog 1.1 056 >5000 0.0050 1.229 0.0063 0.0056
the partition function for arbitrarycompleX g andh as 2400 1.205 059 4995 0.0026 1.256 0.0043 0.0027

4000 1.226 0.63 4992 0.0021 1.264 0.0033 0.0022
Z.(B,Bh) =2, H(E,M)eBo-AEg=(Boho=BMM (22) 8000 1246 0.65 4908 0.0016 1.269 0.0024 0.0017
E,M

ho Mcgu/N T ImB |Reh| Imh D
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D. A log-log plot of D versusN for the data in Table Il is
shown in Fig. 6; a least-squares fit givas-0.60+0.03,
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TABLE IV. Summary of results for the Ising model with inter-
action rangeR on the square lattice with linear dimensidn

which is consistent with the result obtained using the exact 240. The number of neighbotswithin an interaction rang® is

density of stategwith a cutoff. Note thatr, the average
lifetime of the metastable state, for each valueNofs ap-
proximately a constant at the value lnf that was chosen to
minimize D (see Fig. 7. We will use this fact to choose the
value ofh, for the long-range Ising model in Sec. IV.

IV. LONG-RANGE TWO-DIMENSIONAL ISING MODEL R

given in the second column. The valuetgfis determined for each

R by choosing the lifetime of the metastable state to~i2x 10*

MC steps per spin. The duration of each run was1®* MC steps

per spin and each run was repeated tiies. Because we did not
use the first and last 20% of each run, the total number of MC steps
per spin for each value &®® was 1.2 10'.

q hy Im 8 |Reh| Imh D
As discussed in Sec. |, the susceptibility of long-rangeg 112 0.95 0.0036 0992 0.0084 0.0038
Ising models in the metastable state shows an apparent di- 196 1.05 0.0035 1.011 0.0071 0.0035
vergence as the applied magnetic field is increased. In the, 440  1.18 0.003 1199 00078 0.0031
following we show that this effect of a pseudospinodal in 708 1215 00025 1230  0.0055 0.0026
long-range Ising models is reflected in the behavior of th 1008 1235 00013 1252 00039 00014
zeros of the partition function as a function of the complex24 1792  1.248 0.00095 1259 00022 00010

temperature and magnetic field. We will show that as the
interaction rangeR increases, the leading zero moves closer
to the real plane.

Following Refs.[1] and[9], we consider an Ising model
such that each spin interacts with its neighbors within a
given interaction rangeR with a constant interactiord
=4/q, whereq is the number of interaction neighbof3he
factor 4 is included so thak=1 for the usual Ising model on
the square latticg.If the thermodynamic limit is taken first
[1], the system is mean field in tHe—« limit, and the
system is described by Curie-Weiss theft§]. In this limit
the metastable state ends at a spinodal point. The spinodal
a critical point and the susceptibility diverges as in Eq.1).

We consider the Ising system on a square lattice with.
linear dimensionL=240 andN=57600. The interaction
rangeR is defined such that a given spin interacts with any
spin that is within a circle of radiuR. The number of neigh-

IV. This system is large enough (is 10 times larger than the
maximum value ofR) for finite-size effects to be minimal,
but the finite size of the system implies that the zeros of th
partition function must be complex for any range

As in Sec. lll, we equilibrate the system at inverse tem-

5000

peratureB=9/16 and applied magnetic field, for 200 MC
steps per spin. Then we flip the field and compute the histo-
gram H(E,M) from which we determine the density of
statesg(E,M) and the partition function for compleg and
h. The most time consuming part of our procedure is deter-
mining the appropriate value dfy. Although we could de-
terminehy by minimizing D as in Sec. Ill, we instead deter-
mined the mean lifetimer of the metastable state as a
fgnction of hy. For smallhy (away from the spinodal 7 is
greater than the duration of our runs which arx 0
onte Carlo steps per spin. Ag, approache$\, the life-
ime begins to decrease. As mentioned in Sec. Ill, we found
that the values ohg that minimizeD are neathg and also
yield approximately constant lifetimes for different values of
é\l. (This behavior was found for both the infinite- and long-
range Ising modelsWe choose the largest value b for
which the mean lifetime of the metastable state just begins to
ecrease below:210* Monte Carlo steps per spin. This cri-
erion for choosingh, is not as sensitive as minimizing,
but is much quicker, although some additional error is intro-
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FIG. 6. Log-log(base 10 plot of D, the distance of the leading
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FIG. 7. The lifetimer of the metastable state in the infinite-

zero of the partition function to the real axes, vs the systemMize range Ising model as a function of the applied fidlgl for N

for the infinite-range Ising model obtained from Monte Carlo simu- =128. The behavior of for the long-range Ising model considered
lations. A least-squares fit gives a slope-00.60+0.03. The data in Sec. IV is similar, and for the latter we chodsgto be the field
are from Table Il at which 7(h) just begins to decrease sharply.
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10-1 3 G= RdA h3/2_d/4. (25)
I For two dimensions, Eq25) becomes
102 G=R2Ah. 26)
a Fivg
- I\I Hence, if we keep the Ginzburg parameter fixed, we con-
103F ~ clude that
F AhxR™2, 27)
104 el e which is consistent with Eq$23) and (24).
1 10 100

, V. DISCUSSION
FIG. 8. Log-log (base 10 plot of the distanceD to the real

B-Bh axes vs the interaction rangefor the two-dimensional Ising We have shown that the pseudospinodal in Ising models
model. Note that the leading zero of the partition function moveshas a well-defined thermodynamic interpretation and can be
closer to the real axes as the system becomes more mean field.associated with the leading zero of the partition function in
least-squares fit gives a slope of1.8+0.3. The data are from complex temperature/magnetic field space in analogy with
Table IV. the behavior of the Ising critical point in finite systems. Our
, ) ) results for the nature of the approach of the leading zero of
duced wherh, is chosen this way. For a givem, 10° runs  the partition function to the real temperature and magnetic-
of 2x 10" MC steps per spin were done to determine thefie|d plane are consistent with simple scaling arguments.
histogramH (E,M). _ _ An essential ingredient in the scaling arguments was the
The resulting values of the distanPeas a function of the  condition that the Ginzburg parametgrwas held constant
interaction rangeR are listed in Table IV and are plotted in 35 the system approached the pseudospinodal. As was seen in
Fig. 8. We find Sec. Ill, choosing the value df, that minimizes the distance
Do R-18:03 23) of the leading zero to the real temperqtur_e/magne_tic field
' plane also leads to a metastable state lifetime that is found

The largest contribution to the above error estimate arise@Umerically to be constant. From nucleation theory near the
from the uncertainty in the values of the applied fields spllnod.al, we know that the lifetime of the metastable state,
Similarly, we find that the differenceh(— ho) varies withR 7 IS given by[2]
as(see Fig. 9

Ah”zeG

(he RIA- 4’ (28)

hS_ hooc R*1.97i0.06. (24)
The scaling behavior ofh;—|Reh|) is similar. The system- _ _ _
atic error due to the uncertainty fy is the largest contribu- WhereG is defined in Eq(25). For largeG andR as well as
tion to the error estimates. small Ah (close to the pseudospinoglalt is easily shown
The scaling behavior db andh,—h, can be understood that constantr implies constantG. To see this-relation we
by a scaling argument similar to that given in Sec. Il. For aSiMPly replaceR by R+ 6R andAh by Ah+ 6h in Eq. (28)
finite-range system, the Ginzburg parameterl] and demar_ld thai- remains constant. FQ?R and sh small,
constantr implies constaniG. BecauseG is constant, the
1.00 scaling arguments of Secs. Il and IV follow.
: The relation between the zeroes of the partition function
[ and the spinodal provides a mathematical foundation for the
&£ - I\ notion of a pseudospinodal and clarifies the extent to which
" T spinodals act like critical points. It also provides a possible
= N route by which pseudospinodals in supercooled liquids can
0.10 T be characterizefR0].
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