
PHYSICAL REVIEW E 69, 036119 ~2004!
Zeros of the partition function and pseudospinodals in long-range Ising models
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The relation between the zeros of the partition function and spinodal critical points in Ising models with
long-range interactions is investigated. We find that the spinodal is associated with the zeros of the partition
function in four-dimensional complex temperature/magnetic field space. The zeros approach the real
temperature/magnetic field plane as the range of interaction increases.
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I. INTRODUCTION

Mean-field treatments of fluids and Ising models yie
metastable and unstable regions, separated by a well-de
line known as the spinodal@1#. As the spinodal is ap-
proached, the system shows phenomena similar to tha
mean-field critical points. In particular, the isothermal su
ceptibility x in an lsing model diverges as a power law as
spinodal value of the magnetic fieldhs is approached from
the metastable state@2#,

x}~hs2h!21/2, ~1!

whereh is the ~dimensionless! magnetic field. A mean-field
Ising system can be realized in a well-defined way by ass
ing an infinite-range interaction between the spins@1#.

If the interaction range is long but finite, the system is
longer mean field, but can be described as near mean fi
and the spinodal singularity is replaced by a pseudospino
which still has physical effects. As with apparent critic
points in finite-size systems, the susceptibility for a fin
interaction range can be fit to a power law over a limit
range of the scaling field (hs2h). For example, the suscep
tibility in the metastable state of a long but finite-range
teraction Ising model appears to diverge over several dec
in (hs2h) as the pseudospinodal is approached@3#. How-
ever, the divergence is suppressed if the pseudospinod
approached too closely, indicating that the spinodal singu
ity has been smeared out@3#. It is also found that the prop
erties of the pseudospinodal converge rapidly with increas
interaction range to those predicted for the spinodal in m
field theory@4#.

Because the spinodal is a line of critical points, we exp
that the Ising spinodal has properties similar to those of
Ising critical point. In particular, we expect that the spinod
is related to the zeros of the partition function. Lee and Ya
@5# showed that the singularity in the free energy forT less
thanTc , the critical temperature, arises from the presence
1063-651X/2004/69~3!/036119~8!/$22.50 69 0361
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a real positive zero of the partition function in the therm
dynamic limit. In finite systems there is no real positive ze
for T,Tc .

The zeros of the partition function for real temperatureT
lie on the imaginary axis of the complex magnetic-field pla
@6#. For finite systems there is a gap in the distribution of t
zeros aroundh50. This gap shrinks to zero forT,Tc as
N→`. The Lee-Yang relation between the zeros of the p
tition function and critical points is valid for all interactio
ranges at the Ising critical point. These ideas were exten
to complex temperature by Fisher and collaborators@7#.

In order to generalize these ideas to spinodals in Is
models, we consider an Ising model in a magnetic fieldh. We
will consider the ‘‘infinite-range’’ Ising model in which eac
spin interacts with all other spins@8#, and the Domb-Dalton
@9# version of the Ising model in which each spin interac
with its neighbors within a given interaction rangeR with a
constant interaction. These models can be described
mean-field theory in the limitsN→` andR→` ~for N infi-
nite!, respectively. Our main result is that the pseudospino
is related to the zeros of the partition function in fou
dimensional complex temperature/magnetic field space
addition, the zeros approach the real temperature/magn
field plane as the system becomes more mean field.

The structure of the paper is as follows. In Sec. II w
consider the infinite-range Ising model and show both a
lytically and numerically that the zeros of the partition fun
tion approach the realb andh plane asN increases. We find
a similar result in Sec. III by estimating the partition functio
in the metastable state by using the Metropolis algorithm
the single histogram method. In Sec. IV we consider
Domb-Dalton version of the Ising model and estimate
partition function in the metastable state using the same
merical techniques.

II. THE INFINITE-RANGE ISING MODEL: ANALYTICAL
APPROACH

We first consider an Ising model in which every spin i
teracts with every other spin. We will refer to this model
©2004 The American Physical Society19-1
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GULBAHCE, GOULD, AND KLEIN PHYSICAL REVIEW E 69, 036119 ~2004!
the infinite-range Ising model@8#, although the interaction
range becomes infinite only in the limitN→`. The Hamil-
tonian is

H52JN (
iÞ j 51

N

s is j2h(
i

s i . ~2!

We need to rescale the interaction so that the total interac
energy seen by a given spin remains the same asN is in-
creased@1#. We will take

JN5
4J

N21
. ~3!

This choice ofJN yields the Ising mean-field critical tem
peratureTc54 whenN→` @9#, where we have chosen uni
such thatJ/k51.

The exact density of states is easily calculated for t
model and is given by

g~M !5
N!

n! ~N2n!!
, ~4!

wheren is the number of up spins. We haveM52n2N and
the total energyE5JN(N2M2)/2, whereM is the magneti-
zation. @In general, the density of states depends on botE
and M, but becauseE is a unique function ofM in the
infinite-range Ising model, we need to only writeg(M ).#
Hence the partition functionZ can be expressed analytical
for arbitrary complex inverse temperaturesb and magnetic
fields h:

Z~b,bh!5 (
all M

g~M !e2bEebhM. ~5!

To understand the nature ofZ in the metastable state
imagine a simulation of an Ising model in equilibrium with
heat bath at inverse temperatureb in the magnetic fieldh
5h0.0. Becauseh0.0, the magnetization values will b
positive. Then we leth→2h0. If h0 is not too large, the
system will remain in the metastable state for a reason
amount of time and sample positive values ofM. Hence, to
determine the zeros ofZ associated with the pseudospinod
we need to restrict the sum in Eq.~5! to magnetization values
M that are representative of the metastable state. The fol
ing examples will illustrate the need for this restriction a
the procedure for determining the zeros ofZ.

The notion of using a restricted partition function sum
describe the metastable state has a long history. Penros
Lebowitz @10,11# review such restricted partition function
and their properties. A more physical approach can be fo
in the discussion of the noninteracting droplet model
Langer@12#. In this model fluctuations are restricted to no
interacting compact droplets of the stable phase occurrin
the metastable phase. The partition function sum is restri
to droplets less than the critical size. This approximation
reasonable for low temperatures close to the coexiste
curve. Langer showed that this restriction gives the sa
metastable state free energy as the analytic continuatio
03611
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the stable state free energy in the same model. Howe
there are additional properties of the analytic continuat
that do not appear in the restricted sum which are relate
the decay of the metastable state rather than the descrip
of the metastable state itself.

We first considerN54 and retain only the terms in th
partition function sum that correspond to the two positi
values ofM. From Eqs.~4! and ~5!, we have

Zr~b,bh!5 (
M52,4

g~M !e2bEebhM5e8be24bh14e22bh.

~6!

The subscriptr denotes that the sum overM is restricted. If
we let x5e22bh, the equationZr50 is equivalent to

e8bx1450, ~7!

and has the solution

bh52 ln 22 i
p

2
14b. ~8!

In general, we have four unknowns~the real and imagi-
nary parts ofb andh); Eq. ~8! yields two conditions. In the
following we will fix

Reb59/16, ~9!

which is equivalent to a temperature ofT5 4
9 Tc . For this

value ofT, the value of the spinodal magnetic field is know
to behs'1.2704@13#. Equation~7! then gives a line of zeros
in complex (b,bh) space. However, if we are interested on
in the zero closest to the realb, bh plane, we need a fourth
condition. This condition is found by requiring that the qua
tity,

D25~ Im b!21~ Im bh!2, ~10!

be a minimum, which is equivalent to requiring that the lea
ing zero ofZr , the zero closest to the realb andbh plane,
be as close to this plane as possible. If we lety5Im b and
use Eq.~8!, we can rewriteD2 as

D25y21S 2
p

2
14yD 2

. ~11!

Because we wantD2 to be a minimum, we require

dD2

dy
52y12S 2

p

2
14yD ~4!50. ~12!

The solution is

y5Im b5
2p

17
'0.3696, ~13!

and D50.380 97. Note that ReT5Reb/(Reb21Im b2)
51.2417. We finally use Eq.~8! to obtain the value of com-
plex h. The result is summarized in the first row of Table
9-2
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ZEROS OF THE PARTITION FUNCTION AND . . . PHYSICAL REVIEW E69, 036119 ~2004!
The solutions forN59, 16, 100, and 1000, keeping a
the positiveM contributions to the partition function, also a
shown in Table I. We see that althoughD becomes smaller a
N is increased,uRehu overshoots the mean-field value ofhs
'1.27 ~for b59/16). Hence, retaining all the positiveM
terms in the partition function allows the system to explo
more than the metastable state, and we need to furthe
strict the sum over values ofM. Physically we want to ex-
clude values ofM that would drive the system to the stab
phase.

What are the appropriate values of the magnetization
will keep the system in the metastable state? One wa
determine these values is to look atP(M ), the probability
that the system has magnetizationM for a particular value of
b andh:

P~M !5g~M !e2bEebhM. ~14!

Figure 1 showsP(M ) for a system ofN5400 spins forh
521.0 and b59/16. The negative magnetization valu
have a relatively high probability~becauseh,0) and corre-
spond to the stable phase. The positive values of magne
tion have a much lower probability, and the peak atM
5360 corresponds to the most probable value ofM in the

TABLE I. Results for the infinite-range Ising model if all pos
tive values ofM are retained inZ. For largerN, uRehu overshoots
hs51.27 and goes to zero asN is increased still further.

N Im b uRehu Im h D

4 0.3696 1.8577 1.3849 0.3810
9 0.1704 1.1987 0.4782 0.1823
16 0.1070 1.1359 0.2926 0.1153
100 0.0145 0.8854 0.0366 0.0164
1000 0.0014 0.8335 0.0035 0.0016

FIG. 1. The probability of the magnetization,P(M ), obtained
from Eq. ~14! for the infinite-range Ising model withN5400, h5
21.0, andb59/16. The values ofP(M ) are plotted on a log-linea
scale because of the dominance of the negative values ofM. We
include terms in the partition function sum overM from the inflec-
tion point ofP(M ) at MI5298 toM5400 in the partition function.
The inset shows the region where the inflection point is~see arrow!.
03611
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metastable state. In between the peak atM52400 and the
peak atM5360, P(M ) has a minimum atMmin5192 for
this value ofh and an inflection point atMI5298. We will
only include values of the magnetization in the partiti
function sum that are greater thanMI .

The reason for this choice of the cutoff has to do with t
nature of metastability. We expect thatP(M )} exp
„2bF(M )…, whereF(M ) is the metastable state free energ
We want to exclude from the partition function values ofM
that correspond to states which are not characteristic of e
librium. In the infinite-range model the configurations wi
Mmin,M,MI are unstable in that the initial evolution of
fluctuation does not monotonically decay to the metasta
well. This behavior translates into an initial growth of flu
tuations rather than the monotonic decay expected in e
librium.

This behavior is a consequence of the fact that the f
energy, which is proportional to log„P(M )…, is not convex
for these values ofM. Obviously, this behavior holds for a
range of values ofM,Mmin as well. However, we can ex
clude all configurations withM,Mmin because they are in
the stable free energy well and do not occur in the metast
state. Our particular choice of the cutoff is well defined, b
is arbitrary to some extent as long asM is greater thanMI .

To determineMI , we calculate the second derivative
P(M ) as given in Eq.~14!. We find the value ofM that
satisfies

]2P~M !

]M2
5

2N

~N2M !~N1M !
1bJ50. ~15!

Clearly there will be two inflection points~see Fig. 1!. We
choose the one closest to the metastable state maximu
P(M ). We find that the value ofMI is independent ofh,
which is consistent with the idea that the free energy for t
system can be written in the Landau-Ginzburg form wh
the magnetic field appears only in a term linear inM.

We now write the restricted partition functionZr(b,bh)
as

Zr~b,bh!5 (
M5MI

N

CM xM /2. ~16!

The coefficientsCM extend over a wide range of value
and are as large as 10200 for the values ofN that we consid-
ered. For this reason we computedCM to arbitrary precision
so as not to lose accuracy. The zeros ofZr , which is a poly-
nomial in x, were found usingMPSOLVE @14,15#.

For a given value of Imb, we solve for the zeros ofZr in
Eq. ~16! and find the value ofx that corresponds to the lead
ing zero, the zero that minimizesD in Eq. ~10!. We repeat
this step for a range of values of Imb and determine numeri
cally the value of Imb that yields the minimum value ofD.
The typical dependence ofD on Imb is shown in Fig. 2.
From Fig. 2 we see that forN5400, D is a minimum for
Im b'0.035. Once we know this value of Imb, we solve
9-3
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GULBAHCE, GOULD, AND KLEIN PHYSICAL REVIEW E 69, 036119 ~2004!
for h from the relationh5 logx/(22b). ~The value ofx was
determined from the solution ofZr50.!

We repeat the above steps for a range of values ofN and
obtainD, Im b, Reh, and Imh. Our results are summarize
in Table II. Note that Imh, Im b, andD decrease asN in-
creases anduRehu approacheshs51.27. A plot of the zeros
of Z for the infinite-range Ising model in the Imx, Rex plane
is shown in Fig. 3. The values ofD listed in Table II are
plotted as a function ofN in Fig. 4. Because this log-log plo
indicates a power-law dependence, we write

D}N2a. ~17!

A least-squares fit givesa50.65960.003. The estimate o
the error is only statistical.

Our numerical result for the exponenta can be understood
by a simple scaling argument. In order for a mean-field
proach, including the idea of a spinodal, to be a reason
approximation, the system must satisfy the Ginzburg cr
rion, that is, the Ginzburg parameterG must be much greate
than unity. For the infinite-range Ising model, the Ginzbu
criterion can be written as@16#

FIG. 2. The value ofD, a measure of the distance of the leadi
zero to the realb andbh plane, vs Imb for the infinite-range Ising
model forN5400. The minimum distance to the real axes occur
Im b'0.035 for this value ofN.

TABLE II. Values of MI /N, uRehu, Im h, Im b, and the dis-
tance D for increasing values ofN for the infinite-range Ising
model. As explained in the text, the inflection point ofP(M ) deter-
minesMI , the cutoff forM. Note thatuRehu approacheshs51.27
and MI /N approachesms50.745 356. ForN54 000 000,MI /N
50.745 356.

N MI /N Im b uRehu Im h D

100 0.7400 0.086 1.1601 0.2257 0.0902
400 0.7450 0.035 1.2125 0.0949 0.0367
800 0.7450 0.022 1.2322 0.0603 0.0230
1200 0.7450 0.017 1.2407 0.0453 0.0176
1600 0.7450 0.014 1.2456 0.0375 0.0145
2400 0.7458 0.011 1.2508 0.0280 0.0112
03611
-
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j2df2
!1, ~18!

wherej is the correlation length,f is the order parameter
and d is the spatial dimension. We havex;Dh21/2 and f
;Dh1/2 @2#, whereDh5hs2h, and obtain

G5jdDh3/2@1. ~19!

For the infinite-range model,N;jd. Hence,

G5NDh3/2, ~20!

up to a constant of order unity. The Ginzburg parameterG is
a measure of how mean field the system is for finiteN; the
larger the value ofG, the more mean field the system is.
we keepG constant as we approach the spinodal, we see

Dh}N22/3. ~21!

t

FIG. 3. The imaginary vs the real part of the zeros of the pa
tion function plotted in terms of the variablex5e22bh for N
5400 ~empty circles! and 1600~filled circles! for the infinite-range
Ising model. The zeros were obtained by the analytical met
described in Sec. II using Imb listed in Table II.

FIG. 4. Log-log~base 10! plot of D, the distance of the leading
zero of the partition function to the realb-bh axes@see Eq.~10!#,
vs the system sizeN, using the analytical approach described
Sec. II. The slope is20.65960.003. The data are from Table II.
9-4
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ZEROS OF THE PARTITION FUNCTION AND . . . PHYSICAL REVIEW E69, 036119 ~2004!
We present an argument for whyG should be held constan
in Sec. V.

From Eq. ~21! we see thatDh and the distanceD ap-
proach zero with an exponenta52/3, in good agreemen
with our numerical result. BecauseDh in Eq. ~21! could be
associated with Imh, (hs2uRehu), or D, we note that Imh
in Table II goes to zero with the same exponent as in
~17!. We also find that (hs2uRehu)}N20.61.

III. THE INFINITE-RANGE ISING MODEL: MONTE
CARLO APPROACH

In general, the partition function is not known analy
cally. However, we can use a Monte Carlo~MC! method to
determine the density of states from which we can determ
an estimate of the partition function. Such an approach
been used to find the density of states for the near
neighbor Ising model@17,18#. In this way the leading parti-
tion function zeros at the critical point have been comput
and the critical exponentn and corrections to scaling hav
been found with high precision@18#. Our goal is not to ob-
tain precise estimates of the critical exponents near the p
dospinodal, but to show that the same simulations that s
an apparent divergence in the susceptibility also yield
estimate for the leading zero of the partition function whi
behaves as expected as the system becomes more mean

To this end we use the Metropolis algorithm to equilibra
the system at temperatureT516/9 and applied magneti
field h5h0 for about 100 MC steps per spin.~The system
equilibriates as quickly as 10 MC steps per spin depend
on the strength of the field.! Then we flip the magnetic field
and compute the histogramH(E,M ) from which we deter-
mine the density of statesg(E,M ) and the partition function
for complex b and h. We save the values ofM after h→
2h0 and run untilM changes sign or for 5000 MC steps p
spin, whichever comes first. We then throw away the fi
20% of the data to ensure that the system is in metast
equilibrium and the last 20% of the data to ensure that we
not retain values ofM that are too close to the stable sta
The remaining 60% of the run is used to obtainH(E,M ). We
also omit any run whose lifetime in the metastable state
less than 100 MC steps per spin. Our results forH(E,M ) are
not sensitive to the choice of the minimum lifetime nor t
percentage of each run that we use to estimateH(E,M ).
@BecauseE is a function ofM for the infinite-range Ising
model, we need only to computeH(M ). However, we need
to computeH(E,M ) in Sec. IV.# We averagedH(E,M ) over
'5000 runs for each value ofh0 for a total of '1.5
3107 MC steps per spin for a given value ofh andN. Our
results for the susceptibilityx are given in Fig. 5. As men
tioned in Sec. I,x shows an apparent divergence with
mean-field exponent of 1/2 until the pseudospinodal is
proached too closely.

Given the histogramH(E,M ) at b059/16 andh52h0,
we use the usual single histogram method@19# and express
the partition function for arbitrary~complex! b andh as

Zm~b,bh!5(
E,M

H~E,M !e(b02b)Ee2(b0h02bh)M. ~22!
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Note that we do not have to determine the lower cutoff forM
because the Monte Carlo simulation only samples value
M while the system is in a metastable state@noted by the
subscriptm in Eq. ~22!#. As h0 is increased for fixedN, the
distanceD initially decreases, but then begins to increase
hs is approached too closely, that is,D shows a minimum as
a function ofh0. For each of value ofN we choose the value
of h0 for which D is a minimum. A comparison of the his
togram that was determined analytically in Sec. II and e
mated by the Metropolis Monte Carlo algorithm shows
similar qualitative behavior, except that the latter is appro
mately a Gaussian and extends to lower values ofM ~see
Table III!, but with a smaller amplitude.

Table III shows our results forh, Im b, andD for a range
of values ofN at the values ofh0 that minimize the distance

FIG. 5. Log-log~base 10! plot of the isothermal susceptibilityx
as a function of (hs2h0) for the infinite-range Ising model with
N510 000. The system was equilibrated using the Metropolis
gorithm at a temperatureT516/9 and applied fieldh5h0. Then the
field was flipped and the values of the magnetization were sam
in the metastable state. Note thatx exhibits mean-field behavio
over about two decades and the apparent divergence ofx at the
spinodal fieldhs51.27 is rounded off when (hs2h0) becomes too
small. This behavior is an example of the influence of a pseud
pinodal. The straight line with a slope of 1/2 is drawn as a guide
the eye.

TABLE III. Results from Monte Carlo simulations of the
infinite-range Ising model. The simulations were done in the
plied field 2h0 and at the inverse temperature 9/16. The values
h0 for each value ofN were chosen so that the distanceD to the real
b-bh plane is a minimum. As noted in the text, this criterion forh0

also yields metastable state lifetimes that are roughly constan
the different values ofN. The values ofM cut represent the smalles
values ofM that were sampled in the metastable state.

N h0 M cut /N t Im b uRehu Im h D

128 0.9 0.23 4808 0.0144 1.181 0.0165 0.01
400 1.0 0.44 .5000 0.0070 1.196 0.0095 0.007
800 1.1 0.56 .5000 0.0050 1.229 0.0063 0.005
2400 1.205 0.59 4995 0.0026 1.256 0.0043 0.00
4000 1.226 0.63 4992 0.0021 1.264 0.0033 0.00
8000 1.246 0.65 4908 0.0016 1.269 0.0024 0.00
9-5
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GULBAHCE, GOULD, AND KLEIN PHYSICAL REVIEW E 69, 036119 ~2004!
D. A log-log plot of D versusN for the data in Table III is
shown in Fig. 6; a least-squares fit givesa50.6060.03,
which is consistent with the result obtained using the ex
density of states~with a cutoff!. Note thatt, the average
lifetime of the metastable state, for each value ofN is ap-
proximately a constant at the value ofh0 that was chosen to
minimize D ~see Fig. 7!. We will use this fact to choose th
value ofh0 for the long-range Ising model in Sec. IV.

IV. LONG-RANGE TWO-DIMENSIONAL ISING MODEL

As discussed in Sec. I, the susceptibility of long-ran
Ising models in the metastable state shows an apparen
vergence as the applied magnetic field is increased. In
following we show that this effect of a pseudospinodal
long-range Ising models is reflected in the behavior of
zeros of the partition function as a function of the comp
temperature and magnetic field. We will show that as
interaction rangeR increases, the leading zero moves clo
to the real plane.

Following Refs.@1# and @9#, we consider an Ising mode
such that each spin interacts with its neighbors within
given interaction rangeR with a constant interactionJ
54/q, whereq is the number of interaction neighbors.~The
factor 4 is included so thatJ51 for the usual Ising model on
the square lattice.! If the thermodynamic limit is taken firs
@1#, the system is mean field in theR→` limit, and the
system is described by Curie-Weiss theory@11#. In this limit
the metastable state ends at a spinodal point. The spinod
a critical point and the susceptibilityx diverges as in Eq.~1!.

We consider the Ising system on a square lattice w
linear dimensionL5240 andN557 600. The interaction
rangeR is defined such that a given spin interacts with a
spin that is within a circle of radiusR. The number of neigh-
bors of a given spin is shown in the second column of Ta
IV. This system is large enough (L is 10 times larger than the
maximum value ofR) for finite-size effects to be minimal
but the finite size of the system implies that the zeros of
partition function must be complex for any rangeR.

As in Sec. III, we equilibrate the system at inverse te

FIG. 6. Log-log~base 10! plot of D, the distance of the leading
zero of the partition function to the real axes, vs the system sizN
for the infinite-range Ising model obtained from Monte Carlo sim
lations. A least-squares fit gives a slope of20.6060.03. The data
are from Table III.
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peratureb59/16 and applied magnetic fieldh0 for 100 MC
steps per spin. Then we flip the field and compute the his
gram H(E,M ) from which we determine the density o
statesg(E,M ) and the partition function for complexb and
h. The most time consuming part of our procedure is de
mining the appropriate value ofh0. Although we could de-
termineh0 by minimizingD as in Sec. III, we instead deter
mined the mean lifetimet of the metastable state as
function of h0. For smallh0 ~away from the spinodal!, t is
greater than the duration of our runs which are 23104

Monte Carlo steps per spin. Ash0 approacheshs , the life-
time begins to decrease. As mentioned in Sec. III, we fou
that the values ofh0 that minimizeD are nearhs and also
yield approximately constant lifetimes for different values
N. ~This behavior was found for both the infinite- and lon
range Ising models.! We choose the largest value ofh0 for
which the mean lifetime of the metastable state just begin
decrease below 23104 Monte Carlo steps per spin. This cr
terion for choosingh0 is not as sensitive as minimizingD,
but is much quicker, although some additional error is int

-

FIG. 7. The lifetimet of the metastable state in the infinite
range Ising model as a function of the applied fieldh0 for N
5128. The behavior oft for the long-range Ising model considere
in Sec. IV is similar, and for the latter we chooseh0 to be the field
at whicht(h0) just begins to decrease sharply.

TABLE IV. Summary of results for the Ising model with inter
action rangeR on the square lattice with linear dimensionL
5240. The number of neighborsq within an interaction rangeR is
given in the second column. The value ofh0 is determined for each
R by choosing the lifetime of the metastable state to be'23104

MC steps per spin. The duration of each run was 23104 MC steps
per spin and each run was repeated 103 times. Because we did no
use the first and last 20% of each run, the total number of MC s
per spin for each value ofR was 1.23107.

R q h0 Im b uRehu Im h D

6 112 0.95 0.0036 0.992 0.0084 0.0038
8 196 1.05 0.0035 1.011 0.0071 0.0035
12 440 1.18 0.003 1.199 0.0078 0.0031
15 708 1.215 0.0025 1.230 0.0055 0.002
18 1008 1.235 0.0013 1.252 0.0039 0.001
24 1792 1.248 0.00095 1.259 0.0022 0.001
9-6
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duced whenh0 is chosen this way. For a givenh0 , 103 runs
of 23104 MC steps per spin were done to determine
histogramH(E,M ).

The resulting values of the distanceD as a function of the
interaction rangeR are listed in Table IV and are plotted i
Fig. 8. We find

D}R21.860.3. ~23!

The largest contribution to the above error estimate ar
from the uncertainty in the values of the applied fieldsh0.
Similarly, we find that the difference (hs2h0) varies withR
as ~see Fig. 9!

hs2h0}R21.9760.06. ~24!

The scaling behavior of (hs2uRehu) is similar. The system-
atic error due to the uncertainty inh0 is the largest contribu-
tion to the error estimates.

The scaling behavior ofD andhs2h0 can be understood
by a scaling argument similar to that given in Sec. II. Fo
finite-range system, the Ginzburg parameter is@13#

FIG. 8. Log-log ~base 10! plot of the distanceD to the real
b-bh axes vs the interaction rangeR for the two-dimensional Ising
model. Note that the leading zero of the partition function mov
closer to the real axes as the system becomes more mean fie
least-squares fit gives a slope of21.860.3. The data are from
Table IV.

FIG. 9. Log-log ~base 10! plot of the differencehs2h0 as a
function of the interaction rangeR. A least-squares fit gives a slop
of 21.9760.06. The data are from Table IV.
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G5RdDh3/22d/4. ~25!

For two dimensions, Eq.~25! becomes

G5R2Dh. ~26!

Hence, if we keep the Ginzburg parameter fixed, we c
clude that

Dh}R22, ~27!

which is consistent with Eqs.~23! and ~24!.

V. DISCUSSION

We have shown that the pseudospinodal in Ising mod
has a well-defined thermodynamic interpretation and can
associated with the leading zero of the partition function
complex temperature/magnetic field space in analogy w
the behavior of the Ising critical point in finite systems. O
results for the nature of the approach of the leading zero
the partition function to the real temperature and magne
field plane are consistent with simple scaling arguments.

An essential ingredient in the scaling arguments was
condition that the Ginzburg parameterG was held constan
as the system approached the pseudospinodal. As was se
Sec. III, choosing the value ofh0 that minimizes the distance
of the leading zero to the real temperature/magnetic fi
plane also leads to a metastable state lifetime that is fo
numerically to be constant. From nucleation theory near
spinodal, we know that the lifetime of the metastable sta
t, is given by@2#

t}
Dh1/2eG

RdDh2d/4
, ~28!

whereG is defined in Eq.~25!. For largeG andR as well as
small Dh ~close to the pseudospinodal!, it is easily shown
that constantt implies constantG. To see this relation we
simply replaceR by R1dR andDh by Dh1dh in Eq. ~28!
and demand thatt remains constant. FordR anddh small,
constantt implies constantG. BecauseG is constant, the
scaling arguments of Secs. III and IV follow.

The relation between the zeroes of the partition funct
and the spinodal provides a mathematical foundation for
notion of a pseudospinodal and clarifies the extent to wh
spinodals act like critical points. It also provides a possi
route by which pseudospinodals in supercooled liquids
be characterized@20#.
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